Proposals

Send solutions to: José Luis Diaz-Barrero. Applied Mathematics III, Universitat Politècnica de Catalunya, Jordi Girona 1-3, C2, Room 211-A, 08034 Barcelona, Spain or by e-mail to: jose.luis.diaz@upc.edu.

1. Let $A \in M_{2 \times 2}(\mathbb{C})$. Show that $(\text{tr}A)^2 = \text{tr}(A^2) + 2 \det(A)$.

2. Let f be a continuous, nonconstant, real function, and assume the existence of an F such that $f(x + y) = F[f(x), f(y)]$ for all $x, y \in \mathbb{R}$. Show that f is strictly monotone.

3. Let A_1, A_2, \ldots, A_n be the vertices of a regular n–gon P inscribed in a circle C with radius one. Let d_k, $1 \leq k \leq n$, be the distances from an arbitrary point P lying on C to the vertices of P. Prove that

$$\frac{1}{n} \sum_{k=1}^{n} d_k^2$$

is an integer and determine its value.

4. Let n and k be positive integers such that $\sqrt[n]{k}$ is rational. Show that n is a perfect k^{th} power.

5. Let G be a finite group and K be a normal subgroup of G of order p, where p is the smallest prime dividing $|G|$. Prove that K is a subgroup of $Z(G)$, where $Z(G)$ denotes the center of the group.

6. The set A consists of nine positive integers, none of which has a prime divisor larger than six. Prove that A has two elements whose product is a perfect square.

7. Let A be the set of positive integers that do not contain the digit 9 in their decimal expansions. Show that the series

$$\sum_{a \in A} \frac{1}{a}$$

is convergent.

8. Let u, v, w be real numbers and let

$$A(x, y, z) = \sum_{\text{sym}} (ux^3 + vx^2y + wxyz)$$

Suppose that $P(1, 1, 1) \geq 0$, $P(1, 1, 0) \geq 0$ and $P(2, 1, 1) \geq 0$. Prove that $P(a, b, c) \geq 0$, whenever a, b, c are the sides of a triangle.

9. Let A be a 3×3 real orthogonal matrix with $\det(A) = 1$. Prove that

$$(\text{tr}A - 1)^2 + \sum_{i<j} (a_{ij} - a_{ji})^2 = 4$$
10. Let $A(z) = z^n + \sum_{k=0}^{n-1} a_k z^k$ be a polynomial of with complex coefficients of degree $n \geq 2$. Suppose that $A(z)$ has n distinct zeros z_1, \ldots, z_n, and ζ is a complex number such that no ratio of two zeros of $A(z)$ is equal to ζ. Prove that

$$\sum_{k=1}^{n} \frac{1}{A'(z_k)} \left(\frac{1}{A(\zeta z_k)} + \frac{1}{\zeta A(z_k/\zeta)} \right) = 0$$

11. Let V_1, V_2 and V_3 be three subspaces of a vectorial space V of dimension n. Prove that

$$\dim(V_1 \cap V_2 \cap V_3) \geq \dim V_1 + \dim V_2 + \dim V_3 - 2n$$

12. Let h be a strictly positive real number and let f be a continuous function on $[a-h, a+h]$ with finite derivative $f'(x)$ for every x lying in the interval $(a-h, a+h)$, where $a \in \mathbb{R}$. Prove that if $f''(a)$ exists, then

$$\lim_{h \to 0} \frac{f(a+h) - 2f(a) + f(a-h)}{h^2}$$

exists and coincides with $f''(a)$. Does the converse hold?

13. Let $f_k : \mathbb{R} \to \mathbb{R}$, $1 \leq k \leq n$, be a set of differentiable and linearly independent functions. Show that there exist a set of $n-1$ linearly independent functions among the f'_1, f'_2, \ldots, f'_n.

14. Let R, r be two strictly positive real numbers and let k be a positive integer. Consider the sequence of polynomials $\{F_n(x)\}_{n>0}$ defined by

$$F_n(x) = x^n - R^k x^{n-k} - \sum_{1 \leq j \leq n \atop j \neq k} r^j x^{n-j}$$

Prove that every F_n has a unique positive zero ξ_n and also show that the sequence $\{\xi_n\}_{n>0}$ is convergent.

15. Let a, b, c, d be real numbers such that $a > b \geq c > d > 0$. If $ad - bc > 0$, prove that

$$\prod_{k=1}^{n} \left(\frac{a^{\frac{1}{n}}}{c^{\frac{1}{n}}} - \frac{b^{\frac{1}{n}}}{d^{\frac{1}{n}}} \right)^k \geq \left(\frac{a^{\frac{2}{n+1}} - b^{\frac{2}{n+1}}}{c^{\frac{2}{n+1}} - d^{\frac{2}{n+1}}} \right)^{(n+1)/2}$$